

Personal Nutrition Management Medical Centers

רשות החדשנות

Authority

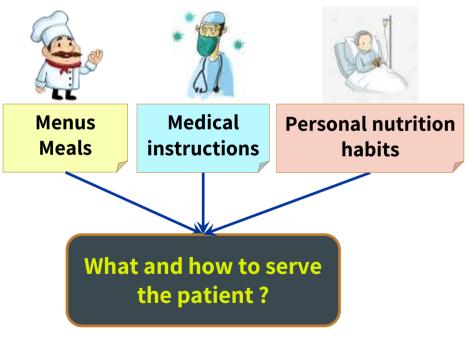
Israel Innovation

~~

-

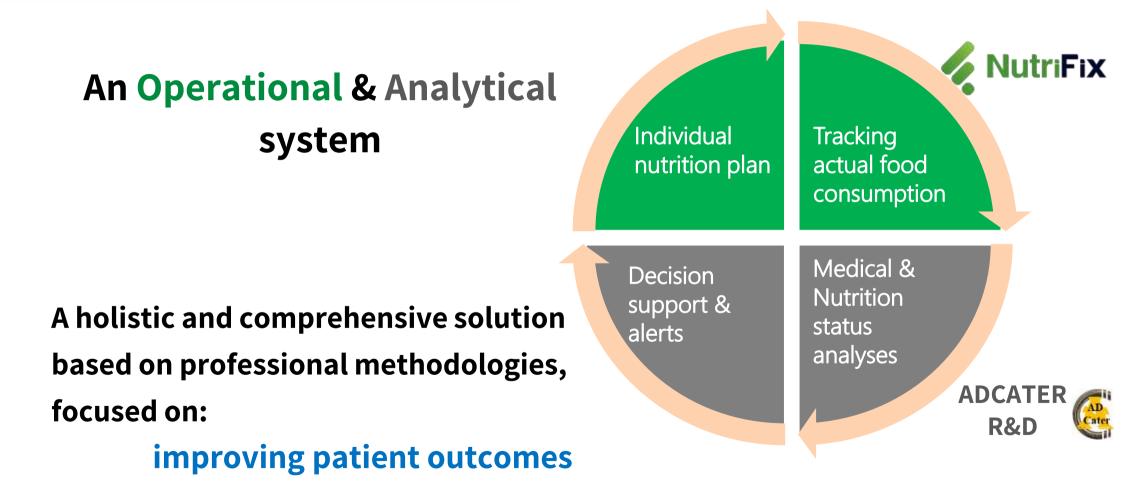
All rights reserved

Discrepancies


Food Chain - Current Reality

Gaps Between Intention and Action

~50% of global in-patients are at malnutrition risk !



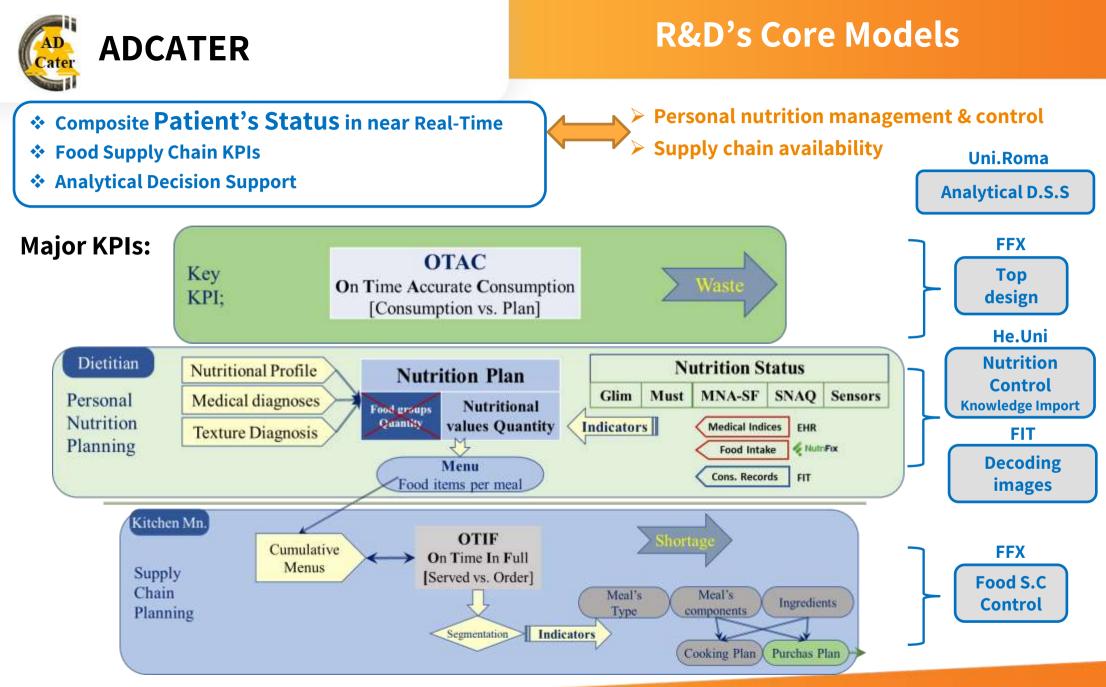
Lunch – after meal

Our Uniqueness

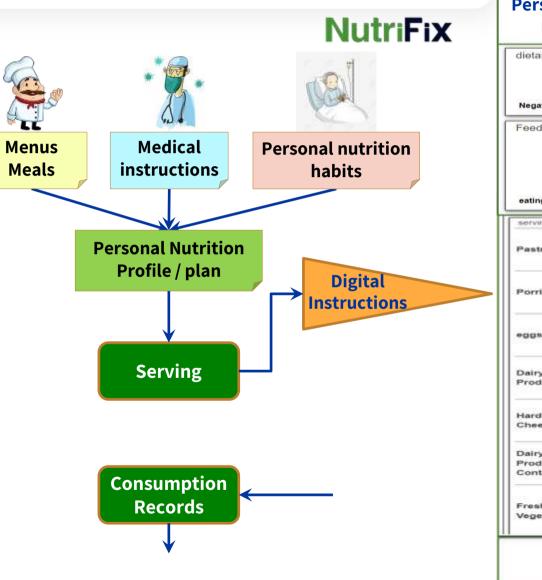
The Technological Initiative

AI Platform

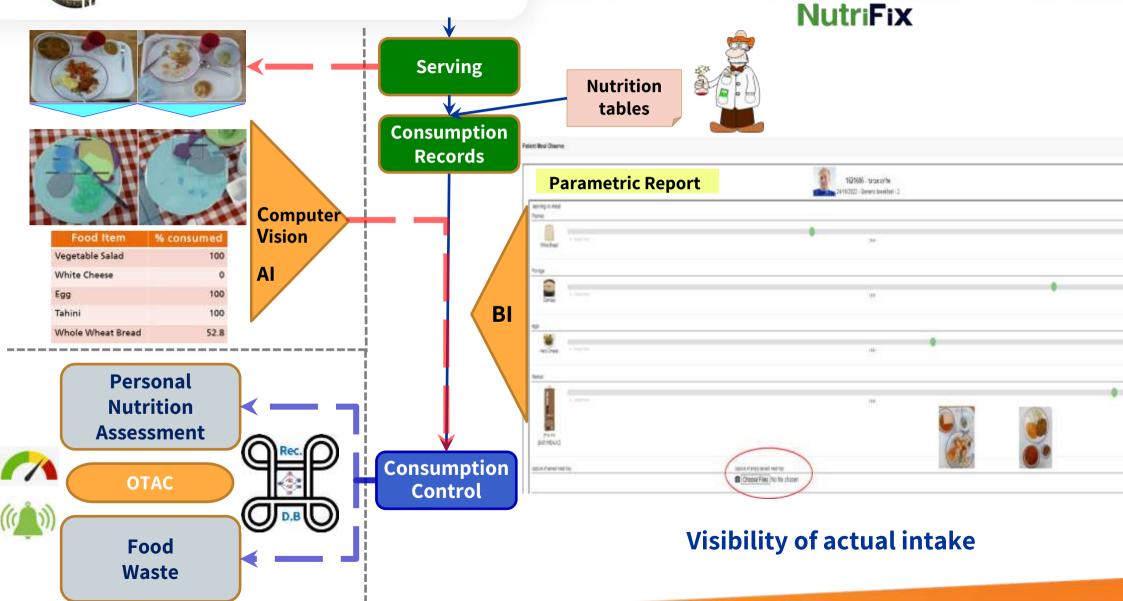
ADCATERT R&D project


Computer Vision identification

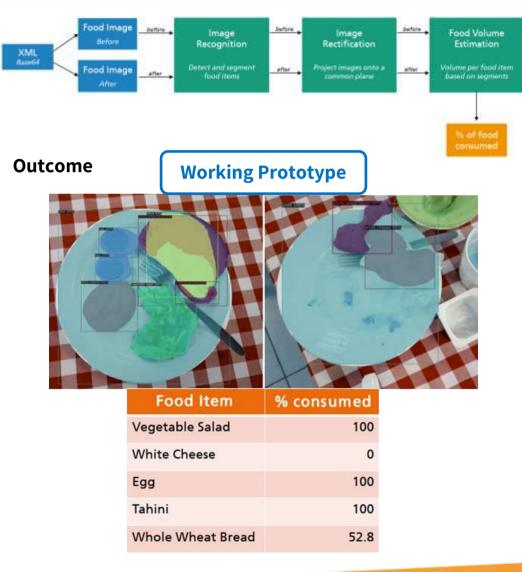
Food Item	% consumed
Vegetable Salad	100
White Cheese	0
Egg	100
Tahini	100
Whole Wheat Bread	52.8


Unique Supply Chain K.P.I

O.T.A.C[©] On Time Accurate Consumption [Consumption vs. Plan]


Consumption Monitoring & Control

Persona men			ליהו אביגד Hebrew	א Eliyah Spanish	nu
dietary Para	ference Cucumber	Positive Prefer		maltivity eggs	Sensitivity peanuts
Feeding Pa	rameters	ident Feeding F	Food Texture Soft	Liquid Texts	Jire Liquid
serving in me Pastries	White Broad	Sweet Pastry	X Not served	4	
Porridge	Oatmeal	Not served	5.5.5		
eggs	Boiled Egg	Herb Ornelet	Not served	}	
Dairy Products	Gvina Levana	Not served			
Hard Cheeses	Tzfatil Cheese	Not served			
Dairy Product Containers	Vanilla Pudding	Labert/Gat	Not serve	d	
Fresh Vegetables	Ground Vegetable Satad	Not served			
		ure food tray: Choose File	No file ch	osen	

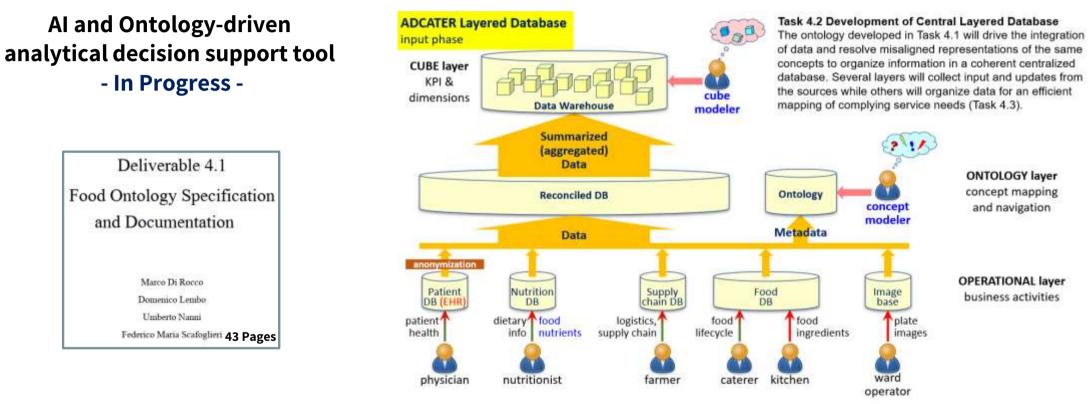

Consumption Monitoring & Control

AI - Computer vision

High Level Design

Fraunhofer: Computer Vision Module Knowledge Import

Development:


- Definition of user requirement and objectives for the computer vision module, aimed at automatic analysis of food images
- Generation of the image dataset, as needed for the training of the CNN model
- Training of the CNN model on the annotated training images
- CNN model testing on the "new" for the model food images and evaluation of the classification performance per food class
- Implementation of plate rectification for automatic estimation of consumed food quantity per food class
- Deployment of the CV Module for image processing on virtual machines in the cloud.

The obtained classification accuracy for salient food classes, with good (about **100 image** instances per food class) representation of these classes in the training image set, lies in the **range of 96% to 99%.**

The classification accuracy for food classes with indistinct appearance (i.e., white cheese versus white pudding) drops at the level of 75% to 85%. Similar decrease of the classification accuracy was recorded for highly compressed images below 80% of their original resolution. These results are highly promising for the project application scenario and automatic dietary monitoring.

AI/BI - Analytical DSS

Uni.Roma: Ontology-driven analytical Module Knowledge Import

Integration of heterogeneous technologies and information sources:

Ontology

- an ontology established knowledge concerning the nutritional concepts and relations of these with the individual patient state
- business intelligence, providing reporting over individual and aggregate KPI's, as well as customized services (e.g., active warning)
- artificial intelligence techniques, providing computer vision support, inferential capabilities, and advanced query environment

Central reconciled database

- Implementation of a **methodology** for the development of a validated database as a starting point for the development of all ADCATER services.
- A well-designed database that allows **expansion** and **integration** of new data, as support for the development of additional services.
- Adoption of an **innovative methodology** driven by **artificial intelligence** based on the use of ontologies that help in the planning phase and the ability to align it to an existing medical vocabulary

State of the art innovation

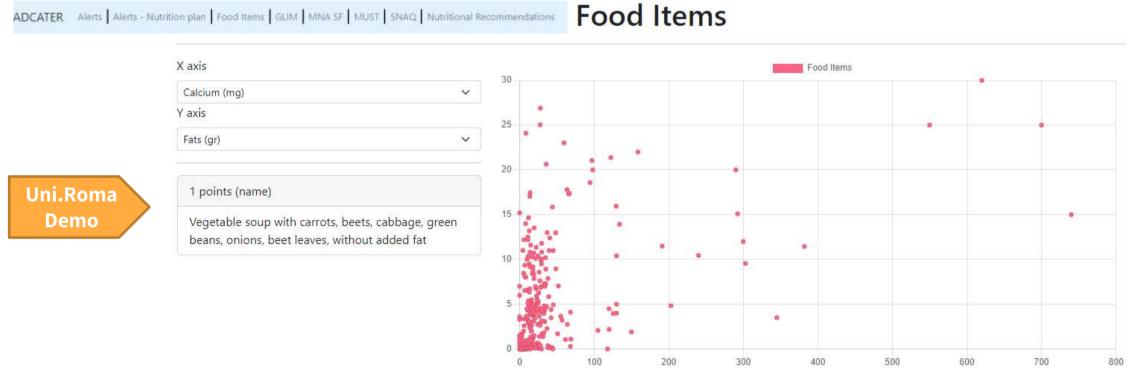
The innovative features brought in by ADCATER:

- Combined use of business intelligence, artificial intelligence, ontologies, and computer vision in a single software system.
- Reports are presented through user interfaces suitable by end users nutritionists, physicians, caregivers - and include configurable active warning conditional triggers, messages and delivery channels.

We have no knowledge of other Information Systems providing physicians and nutritionists with a detail of the actual food consumption by the patients: this information - reported properly - provides an unprecedented tool to tackle the problem of insufficient food intake in health care, and its consequences, and possibly to save lives and reducing human suffering

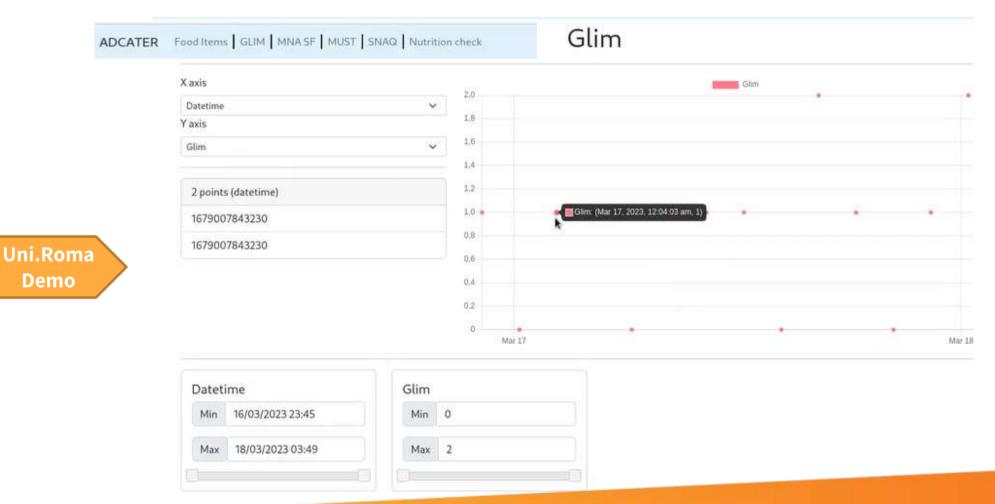
Four main modules:

- Patient's details
- Analysis assessment
- Measurments and diagnoses
- Patient nutrition


Written in the OWL standard (rendered thorugh **Graphol** diagrams)

Ready to incorporate other Ontologies and Vocaboularies (eg, **SNOMED**)

Used to design database and processed and to specify user requests to enable inferential reasoning



Patient's Nutrition Control Models of: Screening & Assessment [Food Items]

Patient's Nutrition Control Models of: Screening & Assessment [Scripts: Glim, Must, SNAQ, MNA-SF]

Patient's Nutrition Control

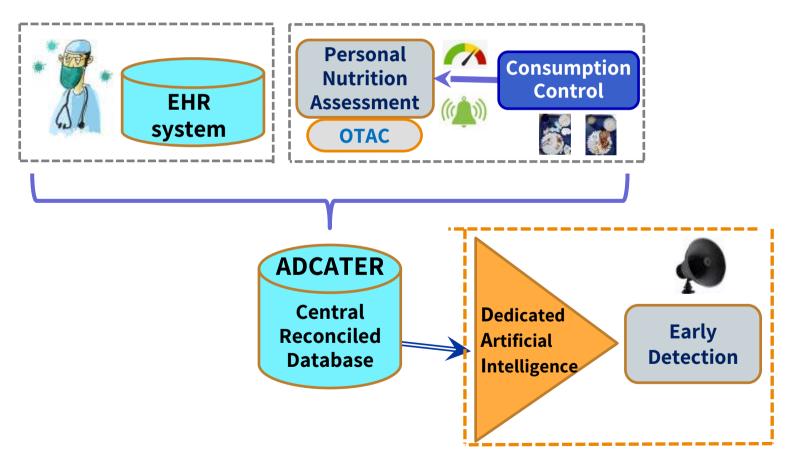
Structured data exploration

[Active warning; Advanced queries]

🕑 Pati	tientMeal_Repo - Visualizzator	×	Patient Code	e Gender	Date	Meal Type			/ Consumed / Served B12(µg)	Consumed / Served Calcium(g)	Served	Consumed / Served Fat(g)	Consumed / Served Fiber(g)	/ Consumed / Served Folic Acid(mg)		/ Consumed / Served Potassium(g)	Ser
			<u>6</u>	м	2022-03-04	breakfast	50%	250/500	1.15/2.3	0.4/0.8	32.5/65	10/20	6/12	0.2/0.4	0.02/0.04	0.05/0.1	7.5
						dinner	20%	120/600	0.48/2.4	0.18/0.9	20/100	7/35	2.4/12	0.1/0.5	0.01/0.03	0.24/1.2	5.6
						lunch	30%	252/840	0.75/2.5	0.21/0.7	48/160	4.5/15	3.6/12	0.09/0.3	0.02/0.05	0.36/1.2	6
					2022-03-05	breakfast	90%	<u>315/350</u>	1.89/2.1	0.63/0.7	<u>38.7/43</u>	<u>13,5/15</u>	7.2/8	0.27/0.3	0.03/0.03	0.45/0.5	¢
						dinner	30%	180/600	0.57/1.9	0.24/0.8	22.5/75	7.5/25	2.4/8	0.12/0.4	0.01/0.04	0.27/0.9	5
						lunch	60%	420/700	0.12/0.2	0.36/0.6	60/100	6/10	4.8/8	0.12/0.2	0.03/0.05	0.54/0.9	1
					2022-03-06	breakfast	80%	400/500	1.84/2.3	0.64/0.8	52/65	16/20	9.6/12	0.32/0.4	0.03/0.04	0.08/0.1	
			Daily Averages					830,14	2,91	1,14	117,30	27,64	15,43	0,52	0,06	0,85	

Patient Code	6
Gender	M
Age	70
Hospital Code	6
Hospitalization Code	0
Start Day	2022-03-04
End Day	2022-03-06

63


AMOUNT OF KCALS

AI and Ontology-driven analytical decision support tool

- Research approach -

Efficient & Effective Monitoring & Control <u>for each Patient</u>

Reducing:

Patient's

- Medical Complications
- Mortality

B2B Solution

- Hospitalization days
- Re-hospitalization

Hospital's

- Risks
- Food Waste
- Care Expenses
- Health average KPIs

Medical Team's

- Active warnings (call for action)
- Actual nutrients intake
- Effects of healing actions
- Allergens' evidence

Providing:

STATE OF THE ART

The services

One of the main goals was to obtain nutritional indicators for each patient, as well as to monitor the nutrition status of patients.

We test these services on some selected patients from the data available in the project.

The main data source [Real Data]:

- > Patient's clinical information derived from the interface with the EHR system at the medical center
- > Actual food consumption is derived from a visual analysis of the images of the meal trays

- 1. Up-to-Date Nutritional indicators for each patient
- 2. Monitoring of the nutritional status
- 3. Gap's Flags [Motivation for action and prioritization]
- 4. Monitoring the response rate to meal components [Motivation for nutrition plan intervention]
- 5. Early detection of nutritional deterioration [Dedicated Artificial Intelligence]
- 6. Harnessing the food system for a personalized nutritional service

ADCATER

Thanks !

Itzik Levy, Coordinator Itzik@foodfixit.com